"En réserve" : la médiathèque dispose d'une "réserve" constituée d'oeuvres classiques, de documentaires fondamentaux ou en multiples exemplaires. Ces documents sont consultables et empruntables sur demande. Adressez-vous à un bibliothècaire.
"Equipement" : les documents portant cette mention sont souvent des nouveautés. Ils vont être couverts et renforcés pour le prêt et seront disponibles très prochainement. Vous pouvez réserver les documents qui sont à "l'équipement".
Cote | Localisation | Statut |
---|---|---|
523 HAW | Nature - Sciences - Techniques Plus de détails sur cet exemplaire Code-barres: 0010414577 Identifiant: Pôle Nature-Sciences-Techniques Identifiant: Jaune |
Auteur | Stephen Hawking [auteur]; Christian Cler [traducteur] |
---|---|
Titre | L'Univers dans une coquille de noix / Stephen Hawking ; traduit de l'anglais par Christian Cler. |
Editeur | Paris : Jacob, 2001. |
Collection | Sciences |
Description | 211 p. : ill. en coul., couv. ill. en coul.. ; 25 cm |
Langue | Français. |
Langue d'origine | Anglais. |
Indice | 523 |
Centre d'intérêts | Documentaire adulte |
Support | Livre |
Après Une brève histoire du temps et Trous noirs et bébés univers, Stephen Hawking fait le point sur les stupéfiantes percées théoriques qui ont eu lieu depuis la publication de son précédent livre. Avec le style à la fois érudit et accessible qui le caractérise, il nous fait découvrir tour à tour la relativité einsteinienne, le principe d'incertitude, la mécanique quantique, les cinq théories des cordes, la théorie M et les mystérieuses p-branes - voie d'accès, peut-être, au Graal de la physique : la " théorie de tout ". [...] Nous faisant partager l'enthousiasme croissant de la communauté scientifique, il nous guide, telle Alice au pays des merveilles, à travers un univers à onze dimensions qui ne correspond peut-être qu'à l'une des innombrables histoires alternatives dans lesquelles les trous noirs s'évaporent, les supercordes s'enroulent sur elles-mêmes et des univers parallèles se contractent jusqu'à disparaître.
Edition de 2001, léger accroc sur la jaquette
Médias
Stephen William Hawking (prononcé [ˈstiːvən ˈhɔːkɪŋ] Écouter), né le à Oxford, est un physicien théoricien et cosmologiste britannique.
Stephen Hawking est professeur de mathématiques à l'université de Cambridge de 1980 à 2009[1], membre du Gonville and Caius College, Cambridge et chercheur distingué du Perimeter Institute for Theoretical Physics[2]. Il est connu pour ses contributions dans les domaines de la cosmologie et la gravité quantique, en particulier dans le cadre des trous noirs. Son succès est également lié à ses ouvrages de vulgarisation scientifique dans lesquels il discute de ses propres théories et de la cosmologie en général, comme le best-seller Une brève histoire du temps (titre originel : A Brief History of Time), qui est resté sur la liste des records des best-sellers du Sunday Times pendant 237 semaines consécutives[3]. Hawking souffre d'une forme rare, de début précoce et d'évolution lente, de sclérose latérale amyotrophique (SLA) ; sa maladie a progressé au fil des ans et l'a laissé presque complètement paralysé.
La clé des principaux travaux scientifiques de Stephen Hawking à ce jour est fondée, en collaboration avec Roger Penrose, sur l'élaboration des théorèmes des singularités dans le cadre de la relativité générale, et la prédiction théorique que les trous noirs devraient émettre des radiations, aujourd'hui connues sous le nom de radiations de Hawking (ou parfois radiations de Bekenstein-Hawking)[4]. C'est un physicien théoricien de renommée mondiale dont la carrière scientifique s'étend sur plus de 40 ans. Ses livres et ses apparitions publiques ont fait de lui une célébrité universitaire. Il est membre honoraire de la Royal Society of Arts[5] et membre à vie de l'Académie pontificale des sciences[6].
Stephen Hawking est né le 8 janvier 1942. Il est le fils du Dr Frank Hawking (1905-1986), un chercheur biologiste, et d'Isobel Hawking (1915-2013), une militante politique. Il a deux jeunes sœurs, Marie et Philippa et un frère adoptif, Edward[7]. Les parents vivaient dans le nord de Londres jusqu'au jour où ils ont déménagé à Oxford, Isobel était alors enceinte de Stephen, et ils désiraient un endroit plus sûr pour la naissance de leur premier enfant (Londres était attaquée par la Luftwaffe)[8]. Selon l'une des publications de Hawking, un missile V-2 a explosé à quelques rues de l'endroit où ils étaient[9].
Après la naissance de Stephen, la famille part s'installer à Londres, où son père dirige la division de parasitologie de l'Institut national de la recherche médicale[7].
En 1950, toute la famille déménage à St Albans dans le Hertfordshire. C'est à l'école de cette ville qu'il poursuit sa scolarité de 1950 à 1953. Si Stephen est un bon élève, il n'est pas un élève exceptionnel[7]. Lorsque, plus tard, on l’interrogea pour savoir s’il y avait un professeur qui l’avait inspiré, il nomma son professeur de mathématiques, Dikran Tahta[10]. Il conservera un lien affectif si fort avec cette école qu'il donnera même son nom à l'une de ses quatre maisons, ainsi qu'à une série de conférences scientifiques extrascolaires.
Hawking a toujours été intéressé par la science[7]. Il s'inscrit à l'université d'Oxford, avec l'intention d'étudier les mathématiques, bien que son père eût préféré qu'il aille en médecine. Étant donné que les mathématiques n'étaient pas proposées, Hawking choisit alors la physique. Ses intérêts au cours de cette période sont la thermodynamique, la relativité et la mécanique quantique. Son professeur de physique, Robert Berman, déclara plus tard dans le New York Times Magazine :
Hawking arriva alors à un examen final d'évaluation à la frontière entre les première et seconde classes d'honneur, un examen oral. Berman a dit de l'examen oral :
Après avoir obtenu son diplôme B.A. à Oxford en 1962, il est resté pour étudier l'astronomie. Il a décidé d'arrêter quand il trouva que l'étude des taches solaires ne l'attirait pas et qu'il était plus intéressé par la théorie que par l'observation[7]. Il a quitté Oxford, avec les honneurs, pour Trinity Hall où il a participé à l'étude de l'astronomie théorique et la cosmologie théorique.
Presque dès son arrivée à Cambridge, il a commencé à développer les symptômes de la sclérose latérale amyotrophique (appelée familièrement aux États-Unis la maladie de Lou Gehrig et en France la maladie de Charcot), une maladie des neurones moteurs qui lui a enlevé presque tout contrôle neuromusculaire. Au cours de ses deux premières années à Cambridge, il ne s'est pas distingué, mais après la stabilisation de sa maladie et avec l'aide de son tuteur de doctorat, William Dennis Sciama, il est retourné travailler sur sa thèse de doctorat[7]. Il a révélé qu'il ne voyait pas beaucoup l'intérêt d'obtenir un doctorat s'il devait mourir bientôt. Hawking a déclaré plus tard que le véritable tournant a été son mariage avec Jane Wilde en 1965, une étudiante en linguistique[7]. Après avoir obtenu son doctorat, Stephen est devenu chercheur à Gonville and Caius College (Cambridge). L'étude des singularités, concept physique et astronomique récent, permet au chercheur de développer différentes théories, qui le mèneront plus tard du Big Bang aux trous noirs.
Hawking a été l'un des plus jeunes membres élus de la Royal Society en 1974, a été fait commandeur de l'ordre de l'Empire britannique en 1982, et est devenu Compagnon d'Honneur en 1989. Hawking est un membre du Conseil des auteurs de The Bulletin of the Atomic Scientists.
Les travaux de Hawking ont été réalisés en dépit de l'aggravation de la paralysie causée par la SLA. En 1974, il est devenu incapable de se nourrir ou de sortir du lit par lui-même, tandis que son élocution était fortement altérée par sa maladie, de sorte que seules les personnes le connaissant bien pouvaient encore le comprendre. En 1985, il a contracté une pneumonie et a dû subir une trachéotomie pour mieux respirer, ce qui l'a rendu définitivement incapable de parler. Walt Waltosz, un informaticien de Californie, a construit un dispositif permettant à Hawking d'écrire sur un ordinateur avec un commutateur dans sa main, tandis qu'un synthétiseur vocal parle pour lui, lisant ce qu'il vient de taper[11]. Ayant perdu l'usage de ses mains, il utilise depuis 2001 les contractions des muscles de sa joue détectées par un capteur infrarouge fixé à une branche de ses lunettes, pouvant ainsi sélectionner les lettres une par une sur un clavier virtuel d'une tablette dont un curseur balaie en permanence l'alphabet, puis sélectionner des mots grâce à un algorithme prédictif. Ce système lui permet d'exprimer cinq mots à la minute et de donner des cours à l’université de Cambridge jusqu’en 2009. Face à l’aggravation de son état, Intel met au point depuis une nouvelle interface de contrôle basée sur la reconnaissance faciale des mouvements de ses lèvres et sourcils[12].
La nécessité de toujours peser ses mots (au risque d'en effacer d'autres dans le vocabulaire automatique) n'a pas nui à son style d'une grande limpidité[13], en particulier dans son livre Une brève histoire du temps (1988).
Jane Hawking (née Wilde), la première femme de Hawking, a pris soin de lui, jusqu'en 1991, lorsque le couple s'est séparé. Ils ont eu trois enfants : Robert (1967), Lucy (1969), et Timothy (1979). Hawking s'est marié à son infirmière, Elaine Mason (qui a déjà été mariée à David Mason, le concepteur de la première version de l'ordinateur parlant d'Hawking), en 1995. En 2004, sont publiés les comptes rendus de plusieurs procès-verbaux impliquant Elaine dans des affaires de maltraitance à son égard[14]. En octobre 2006, Hawking a demandé le divorce de sa seconde épouse[15].
En 1999, Jane Hawking a publié un mémoire, Music to Move the Stars, détaillant sa propre relation à long terme avec un ami de la famille avec lequel elle se mariera plus tard. La fille de Hawking, Lucy, est une romancière. Leur fils aîné, Robert, a émigré aux États-Unis où il est marié, et a eu un enfant, George Edward Hawking.
En premier lieu, Roger Penrose et Stephen Hawking construisent la structure mathématique répondant à la question d'une singularité comme origine de l'Univers. Ensuite, à partir des années 1970, Hawking approfondit ses recherches sur les densités infinies locales, et ses études sur les trous noirs ont fait progresser bien d'autres domaines. Enfin, la théorie du tout, visant à unifier les quatre forces physiques, est au centre des recherches actuelles de Hawking. Le but est de démontrer que l'Univers peut être décrit par un modèle mathématique stable, déterminé par les lois physiques connues, en vertu du principe de croissance finie mais non bornée, modèle auquel Hawking a donné beaucoup de crédit.
Son handicap lourd ne saurait expliquer le grand succès de ses recherches ; Hawking a cherché à vulgariser son travail, et son livre Une brève histoire du temps est l'un des plus grands succès de la littérature scientifique. En 2001, paraît son deuxième ouvrage, L'Univers dans une coquille de noix, qui est l'exposé du dernier état de ses réflexions, où il aborde la supergravité et la supersymétrie, la théorie quantique et théorie-M, l'holographie et la dualité, la théorie des supercordes et des p-branes, etc.. Il s'interroge également sur la possibilité de voyager dans le temps et sur l'existence d'univers multiples. En 2007, il écrit un livre, avec sa fille, Georges et les Secrets de l'univers, premier tome de la série Georges qu'il écrira avec elle. En 2009, Barack Obama lui remet la médaille présidentielle de la Liberté, la plus haute distinction civile accordée aux États-Unis.
Les principaux domaines de recherches de Hawking sont la cosmologie et la gravité quantique.
À la fin des années 1960, lui et son ami et collègue de Cambridge, Roger Penrose, ont appliqué un nouveau modèle mathématique complexe, qu'ils ont créé à partir de la théorie d'Albert Einstein sur la relativité générale[16]. Cela a conduit Hawking à prouver en 1970 le premier de nombreux théorèmes sur les singularités, tels les théorèmes capables de fournir un ensemble de conditions suffisantes à l'existence d'une singularité dans l'espace-temps. Ce travail a montré que, loin d'être une curiosité mathématique qui ne figure que dans des cas particuliers, les singularités sont assez génériques dans la relativité générale[17].
Au milieu des années 1960, alors qu'il poursuit ses études de physicien en vue d'obtenir son doctorat, Hawking démontre que la théorie de la relativité générale d'Einstein implique que l'espace et le temps ont eu un commencement, le Big Bang, et une fin, les trous noirs.
Ces conclusions le conduisent à découvrir dès 1963 que les trous noirs ne seraient pas si noirs que cela, mais qu'ils seraient capables d'émettre un rayonnement, le rayonnement Hawking. La réaction initiale de la communauté scientifique ne fut pas très positive.
La radiation Hawking correspond à un rayonnement de corps noir. Elle est émise dans toutes les directions et conduit à deux conclusions :
En 1971, Hawking avance l'hypothèse que le phénomène du Big Bang aurait dispersé dans l'espace des micro trous noirs d’une masse d’environ 109 tonnes et de la taille d'un proton ainsi que des trous noirs plus massifs et de la taille d'une montagne. Des trous noirs aussi massifs que dix millions de masses solaires pourraient également résider au centre des galaxies, ce qui expliquerait l'intense énergie émise par les radiogalaxies et les quasars.
Mais à force de calculs, il découvre également qu'en appliquant les lois de la physique quantique à la cosmologie, il peut déterminer la dimension des singularités, ces « points de densité et de courbure d'espace-temps infinis » prédits par la relativité générale et que l'on ne peut pas traiter mathématiquement. Il réalise que l'horizon des événements des trous noirs (la limite sous laquelle rien ne peut s'échapper) ne peut pas diminuer lorsqu'il attire de la matière. Si on prend une analogie avec la thermodynamique dit-il, c'est exactement ce que dit la deuxième loi de la thermodynamique : « dans un système isolé, l'entropie (son degré de désordre) ne peut pas décroître ». D'autres disent plus simplement que le chaos augmente. Dans une singularité, le système thermodynamique est totalement désordonné car le tenseur de Weyl est dominant, il tend même vers l’infini, ce qui permet à Hawking de conclure que son entropie est maximale. Mais son confrère, Jacob Bekenstein de l'université de Princeton lui répond qu'il ne s'agit pas seulement d'une analogie, l'horizon des événements représente la mesure de l'entropie du trou noir. Il s'ensuit un échange d'arguments par articles interposés jusqu'à ce qu'Hawking lui fasse remarquer que si un trou noir présente une entropie, il a donc aussi une température, et s'il a une température, il doit émettre un rayonnement, mais que par définition un trou noir n'émet rien, aucun rayonnement. C'est alors qu'Hawking va plus loin dans ses calculs et découvre qu'un trou noir peut finalement émettre un rayonnement de manière constante.
Il pense tout d'abord avoir fait une erreur de calcul et garde ses travaux pour lui : « Je craignais, dit-il, que Bekenstein ne le découvre, et ne l'utilise comme argument pour appuyer sa propre théorie ». Finalement, Hawking le convainc de l'exactitude de son résultat et qu'on peut utiliser la physique quantique pour expliquer le mécanisme de rayonnement qui porte aujourd'hui son nom. Bekenstein s'y plie à contrecœur, disant que c'est « fondamentalement exact mais d'une manière à laquelle je ne m'attendais certainement pas ».
Plus tard, Hawking aborde cette question avec moult détails dans la première version de son livre « Trous noirs et bébés univers », puis il supprime ce passage et se contente d'indiquer que Jacob Bekenstein lui a fait une « suggestion cruciale ». On lui attribue la volonté de tourner la théorie de Bekenstein en dérision (en la traitant de « scandaleuse » ou d'« insensée ») pour accroître la valeur de ses propres résultats. Même son directeur de thèse, le Dr Dennis Sciama, juge « son ton méprisant face au travail de Bekenstein ». Finalement tout le travail de son concurrent est oublié.
Si un trou noir est capable de rayonner, ce n’est pas pour autant que cette radiation contient une information sur le trou noir. La particule émise peut être quelconque tant que sa longueur d’onde est supérieure au quart de la circonférence du trou noir (celle de l’horizon des événements). En fait, en absorbant tout jusqu’à la lumière, le trou noir devient une censure cosmique comme le disait Penrose, ne libérant aucune information sur ses propriétés. Du moins Hawking le pensait à l’époque. Mais ceci n’étant qu’une solution théorique tirée de ses calculs, il fait le pari avec Kip Thorne contre John Preskill que les trous noirs constituent la phase terminale de l’univers et emprisonnent à jamais tout ce qui passe à leur proximité sans libérer la moindre information. Le 21 juillet 2004, il admet avoir perdu son pari et admet, avec Leonard Susskind, que l’information apparemment captive pourrait rester concentrée sur l’horizon d’un trou noir, donc sur une surface, par analogie avec un hologramme qui concentre une information sur une image à trois dimensions, également sur une surface[18].